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Particle systems

Particle system :

collection of interacting particles of same kind.

Ex :

particles in motion
neural network [Löcherbach, Ditlevsen (2017)],...
gene network [Reynaud-Bouret, Schbath (2010)],...
inter-gang crimes [Stomakhin et al. (2011)]

each particle has a state

each state follows a dynamic
(ex : differential equation, ODE, PDE, SDE, SPDE...)
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neural network [Löcherbach, Ditlevsen (2017)],...
gene network [Reynaud-Bouret, Schbath (2010)],...
inter-gang crimes [Stomakhin et al. (2011)]

each particle has a state

each state follows a dynamic
(ex : differential equation, ODE, PDE, SDE, SPDE...)

Xavier ERNY Interacting particle system 3 / 21



Introduction
Large scale limits for particle systems

Generalization

Particle systems
Point processes
Mathematical model

Particle systems

Particle system :

collection of interacting particles of same kind. Ex :

particles in motion
neural network [Löcherbach, Ditlevsen (2017)],...
gene network [Reynaud-Bouret, Schbath (2010)],...
inter-gang crimes [Stomakhin et al. (2011)]

each particle has a state

each state follows a dynamic
(ex : differential equation, ODE, PDE, SDE, SPDE...)

Xavier ERNY Interacting particle system 3 / 21



Introduction
Large scale limits for particle systems

Generalization

Particle systems
Point processes
Mathematical model

Particle systems

Particle system :

collection of interacting particles of same kind. Ex :

particles in motion
neural network [Löcherbach, Ditlevsen (2017)],...
gene network [Reynaud-Bouret, Schbath (2010)],...
inter-gang crimes [Stomakhin et al. (2011)]

each particle has a state

each state follows a dynamic
(ex : differential equation, ODE, PDE, SDE, SPDE...)

Xavier ERNY Interacting particle system 3 / 21



Introduction
Large scale limits for particle systems

Generalization

Particle systems
Point processes
Mathematical model

Discrete time interaction

Frame modelization :

each particle ”creates” event at random rate

each event modifies the rate of all the particles
(Excitation/Inhibition)

Particle system One particle Events

Neural network Neuron Spike emitting

Gene network Gene Proteins emitting

Inter-gang crimes Pair of gangs Violent crimes

The activity of each particle is modeled by a point process
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Point process : definitions

A point process Z is :

a random countable set of R+ : Z = {Tn : n ∈ N}

a random point measure on R+ : Z =
∑

n∈N δTn

a stair function on R+ : Zt = Z ([0, t])

0 T1 T2 T3 T4 T5 T6

1

2

3

4

5

6
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Rate of events

Context : consider Z point process with rate λ
Problem : define T1 the 1st atom of Z

Solution :
Constant rate λ ∈ R∗

+ :

T1 exponential variable with parameter λ

Non-constant rate (λt)t≥0 : [Lewis, Schedler (1979)], [Ogata (1981)]

define T ′ exponential variable with parameter ||λ||∞

then

{
with probability λT ′/||λ||∞,T1 := T ′

otherwise, repeat from T ′

Why : Let Z point process with constant rate λ > 0, and t ≥ 0, n ∈ N∗

Conditionally to {Zt = n}, the Tk (1 ≤ k ≤ n) are iid uniform on [0, t]
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Mathematical model

Let us consider a N−particle system :

each particle creates events

ZN,i
t = number of events of particle i before t

ZN,i has rate f (XN,i
t )

Dynamic of XN,i :

dXN,i
t = b

(
XN,i
t

)
dt +

N∑
j=1

u(j , i , t)dZN,j
t

Interpretation :

while no event occurs, the dynamic is an ODE

if particle j creates event at time t, XN,i
t = XN,i

t− + u(j , i , t)
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Neural network model
particle = neuron

a particle creates an event = a neuron sends a spike

XN,i = membrane potential of the neuron i

drift −αx models ”exponential loss”

dXN,i
t = b(XN,i

t )dt +
N∑
j=1

u(j , i , t)dZN,j
t
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Large scale limit
Linear scaling

Large scale limit

dXN,i
t = −αXN,i

t dt +
N∑
j=1

u(j , i , t)dZN,j
t

Study the limit N → ∞ =⇒ rescale the sum :

linear scaling N−1 (LLN) :
[Delattre et al. (2016)] (Hawkes process, u(j , i , t) = 1),
[Chevallier et al. (2019)] (u(j , i , t) = u(j , i)),
[Löcherbach, Ditlevsen (2017)] (u(j , i , t) = 1, multi-population)

diffusive scaling N−1/2 (CLT) : random and centered u(j , i , t)
[E. et al. (2019)], [E. et al. (a) (2021)],
[Pfaffelhuber et al. (2021)], [E. et al. (b) (2021)]

Why making N → ∞ :

it is natural N ≈ 86.109

the limit system can be easier to simulate and study
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[Chevallier et al. (2019)] (u(j , i , t) = u(j , i)),
[Löcherbach, Ditlevsen (2017)] (u(j , i , t) = 1, multi-population)

diffusive scaling N−1/2 (CLT) : random and centered u(j , i , t)
[E. et al. (2019)], [E. et al. (a) (2021)],
[Pfaffelhuber et al. (2021)], [E. et al. (b) (2021)]

Why making N → ∞ :

it is natural N ≈ 86.109

the limit system can be easier to simulate and study
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Generalization

Large scale limit
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Model

dXN,i
t = −αXN,i

t dt +
1

N

N∑
j=1

dZN,j
t

Dynamic of XN,i :

XN,i
t = XN,i

s e−α(t−s) if the system does not jump in [s, t[

XN,i
t = XN,i

t− + 1
N if any neuron emits a spike at t

the jump rate of XN,i is
∑N

j=1 f (X
N,j
t )

N = 100 N = 10000
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Generalization

Large scale limit
Linear scaling

Limit system (1)

N−neuron system

dXN,i
t = −αXN,i

t dt +
1

N

N∑
j=1

dZN,j
t

Limit system

dX̄ i
t = −αX̄ i

t dt + lim
N→∞

1

N

N∑
j=1

dZ̄ j
t

Fact (LLN) : if (Xj)j∈N∗ are iid with 1st order moment,

1

N

N∑
j=1

Xj
a.s. and L1−→

N→∞
E [X1]
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Generalization

Large scale limit
Linear scaling

Limit system (2)

N−neuron system

dXN,i
t = −αXN,i

t dt +
1

N

N∑
j=1

dZN,j
t

SDE driven by N point processes (N >> 1)

Limit system
dx̄ it = −αx̄ itdt + f (x̄ it)dt

ODE

Result

E
[
sup

0≤s≤t

∣∣∣XN,i
s − x̄ is

∣∣∣] ≤ Ct · N−1/2
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Introduction
Large scale limits for particle systems

Generalization

Large scale limit
Linear scaling

Sketch of proof

dXN
t = −αXN

t dt + 1
N

N∑
j=1

dZN,j
t

where ZN,j has rate f (XN
t )

Infinitesimal generator of XN : for g smooth enough,

ANg(x) = lim
t→0

1
t

(
E
[
g(XN

t )|XN
0 = x

]
− g(x)

)
ANg(x) = −αxg ′(x) + Nf (x)

[
g
(
x + 1

N

)
− g(x)

]
1
N g

′(x) + O(1/N2)

N −→ +∞ : Āg(x) = −αxg ′(x) + f (x)g ′(x)

dx t = −αx̄tdt + f (x̄t)dt∣∣∣Āg(x)− ANg(x)
∣∣∣ ≤ 1

2N
f (x)||g ′′||∞
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∣∣∣ ≤ 1

2N
f (x)||g ′′||∞

Xavier ERNY Interacting particle system 13 / 21



Introduction
Large scale limits for particle systems

Generalization

Large scale limit
Linear scaling

Sketch of proof

dXN
t = −αXN

t dt + 1
N

N∑
j=1

dZN,j
t

where ZN,j has rate f (XN
t )

Infinitesimal generator of XN : for g smooth enough,

ANg(x) = lim
t→0

1
t

(
E
[
g(XN

t )|XN
0 = x

]
− g(x)

)
ANg(x) = −αxg ′(x) + Nf (x)

[
g
(
x + 1

N

)
− g(x)

]
1
N g

′(x) + O(1/N2)
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N −→ +∞ : Āg(x) = −αxg ′(x) + f (x)g ′(x)

dx t = −αx̄tdt + f (x̄t)dt∣∣∣Āg(x)− ANg(x)
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Introduction
Large scale limits for particle systems

Generalization

McKean-Vlasov frame
Multi-population system

McKean-Vlasov system : definition

McKean-Vlasov equation :

dXt = b(Xt , µt)dt + u(Xt , µt)dZt

with µt := L(Xt)

McKean-Vlasov system :

dXN,i
t = b(XN,i

t , µN
t )dt +

N∑
j=1

u(j , i , t, µN
t )dZ

N,j
t

with µN
t := 1

N

∑N
k=1 δXN,k

t

First inspiration :
Boltzmann equation kinetic theory of gases [Kac (1956)]

Why it is natural :

dxN,i
t =

1

N

N∑
j=1

b(xN,j
t , xN,i

t )dt
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Result [Andreis et al. (2018)] (and [E. (2021)])
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Multi-population frame

Previously : all the particles within a system are similar

Now :

consider a system divided into a fix number of subsystems

all the particles within a subsystem are similar

Example : neural retina
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Multi-population model

N = total number of particles

K = number of subsystems

Nk = number of particles in susbsystem k

(i.e. N = N1 + N2 + ...+ NK )

for each k , Nk/N −→
N→∞

λk > 0

I (k) = the set of subsystems that ”sends” jumps to the subsystem k

dXN,k,i
t = bk(X

N,k,i
t )dt +

∑
k ′∈I (k)

Nk′∑
j=1

uk ′,k(t)dZ
N,l ,j
t
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Löcherbach, Ditlevsen (2017). Multi-class oscillating systems of
interacting neurons. Stoch. Proc. Appl.

Reynaud-Bouret, Schbath (2010). Adaptive estimation for Hawkes
processes ; application to genome analysis. The Annals of Statistics.

Stomakhin, Short, Bertozzi (2011). Reconstruction of missing data
in social networks based on temporal patterns of interactions.
Inverse Problems.

Kac (1956). Foundations of kinetic theory. Proceedings of the third
Berkeley Symposium on mathematical statistics and probability.

Thinning algorithm :

Lewis, Schedler (1979). Simulation of nonhomogeneous Poisson
process by thinning. Naval Res. Logistics Quart.

Ogata (1981). On Lewis’ simulation method for point processes.
IEEE Trans. Inform. Theory.

Xavier ERNY Interacting particle system 18 / 21



Introduction
Large scale limits for particle systems

Generalization

References (2)

Linear large scale limits :
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Thank you for your attention !

Questions ?
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